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A procedure for determining the flow which results from introducing a long two- 
dimensional obstacle of finite height into a unidirectional, two-dimensional, stable, 
but otherwise arbitrary stratified shear flow of finite depth is described. The method 
is based on a generalization of the known results for two-layer flows, described in 
Baines (1984). The flow is assumed to be hydrostatic with negligible mixing, and the 
stratified flow is represented by an arbitrary number of discrete layers, so that the 
model is hydraulic in character. The procedure involves the calculation of the 
changes to the steady-state flow resulting from successive increases in the height of 
the topography from zero. For a given initial flow, introduction of an obstacle only 
alters the flow in its vicinity for obstacle heights h, less than a height he, where the 
flow is critical (implying zero wave speed) a t  the obstacle crest for some particular 
internal wave mode. Increasing the obstacle height further causes the flow to adjust 
to maintain a critical condition at  the obstacle crest, and this causes disturbances 
with the structure of the critical mode to be propagated upstream. These may take 
the form of an upstream hydraulic jump or of a time-dependent rarefaction 
(implying a disturbance which becomes increasingly spread out with time), or both, 
depending on the nonlinear dispersive properties of the system. Their passage past 
a given upstream location results in a permanent change to the local velocity and 
density profiles. As the obstacle height is further increased these processes will 
continue until the flow becomes critical just upstream of the obstacle, or a fluid layer 
becomes blocked. For greater obstacle heights the above phenomena may be 
repeated with other modes. A numerical procedure which implements these processes 
has been developed, and examples of applicatons to two- and three-layer systems are 
given. 

1. Introduction 
This paper is concerned with the nature of stratified flow over isolated long two- 

dimensional obstacles of finite height in finite-depth systems. We formulate the 
problem in the following way; for a given stratified shear flow with arbitrary (but 
stable) velocity and density profiles, what is the nature of the flow that results from 
the introduction of an obstacle of given height and shape ? The situation is illustrated 
in figure 1 .  The chief difficulty with this problem is that  the introduction of the 
obstacle may cause the generation of disturbances which propagate arbitrarily far 
upstream and (in an inviscid system) alter the character of the incident flow. This 
means that, unless these disturbances can be determined, i t  is not possible to obtain 
the resulting flow field from a steady-state calculation. Furthermore, the generation 
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FIGURE 1. The introduction of an obstacle of finite height into a stratified shear flow may cause 
disturbances to be propagated arbitrarily far upstream which alter the oncoming flow. 

process for these disturbances must be nonlinear in character, which means that this 
computation is not a simple matter. 

The overall problem has been discussed in more detail in 5 1 of Baines (1984). That 
paper describes a theoretical and experimental study of two-layer flow, where only 
one internal mode is present. A reasonably complete picture of flow over obstacles for 
this relatively simple system was given by first constructing a theoretical model 
based on unifying the work of previous authors and then comparing the results with 
laboratory experiments. The success of this model led to the suggestion that it could 
be applied in modified form to more general velocity and density profiles, where 
many modes may be present. The development of such a general procedure for 
practical computations is the subject of this article. 

The model considered here has the following properties or restrictions : (i) the flow 
is assumed to be two-dimensional, inviscid (apart from dissipation in jumps), and 
hydrostatic (implying sufficiently long topography) ; (ii) the topography has a single 
maximum height ; (iii) the stratified shear flow may be approximated by an arbitrary 
but finite number of discrete homogeneous layers, which do not mix ; (iv) the flow is 
initially two-dimensional and unidirectional, and (v) the fluid is bounded above by 
a rigid boundary or an infinitely deep homogeneous layer. 

Scale analysis of the complete equations of motion indicates that as the horizontal 
gradient of the topography becomes small the flow becomes hydrostatic (excluding 
inside hydraulic jumps), However, recent work by Pratt  (1984) has shown that this 
may not be so between two obstacles of comparable height, where cnoidal-type 
wavetrains may be present. The above restriction to a single topographic maximum 
is therefore required in order to guarantee hydrostatic flow. 

The assumption that the fluid be layered has the interesting effect that critical 
layers are excluded from the flow. Horizontally propagating modes in layered flows 
may be speeds which are greater, equal to, or less than the flow velocity of any given 
layer. Critical layers, therefore, present no problem for the model. The question of 
whether or not the model lacks some relevant physics regarding critical layers is 
circumvented in the present paper by requiring that the initial stratified shear flow 
contain flow in one direction only (relative to the topography). The subsequent 
production of upstream disturbances by topography does not alter this condition 
upstream. 

Restriction (v) above implies that wave energy may not escape upwards out of the 



Determining upstream effects in stratijed $ow 

n+ 1 

n 
/ - - P a C  

\-- \ * 

3 

c z 
i l l  

Layer 1 
\ \ \ \ \  \ \ + x  

FIGURE 2 .  The configuration of layers for the model. 

system, so that small-amplitude motions may be described in terms of discrete 
horizontally propagating modes. This is what is meant by a ‘finite-depth’ system. 
The relative properties of finite and infinite-depth systems are described in the 
review by Baines (1987).  

The general method described in this paper is based on an extension of ideas which 
have been empirically validated for two-layer flows. It depends heavily on the work 
of previous authors, which it brings together to provide a unified physical picture. 
Numerical algorithms, in particular, are obtained from the work of Su (1976) and Lee 
& Su (1977).  

The plan of the paper is as follows. The equations for layered flows are given in $ 2 ,  
and the equations governing linear wave disturbances on steady layered shear flows 
are given in $3.  Hydraulic jumps and the equations governing them are summarized 
in $4. With these three sections as preliminaries, the general procedures for 
computing topographic effects in stratified shear flows is outlined in $ 5 ,  with 
emphasis on the physical basis. Two examples to illustrate the method and the 
typical character of the results are given in $6, and the conclusions are summarized 
in $ 7 .  

2. Equations for layered flows 

may be expressed as (e.g. Lee & Su 1977) 
The equations governing the hydrostatic motion of n-incompressible layers of fluid 

adi a -+- (u,d,) = 0, 
at ax 

au, aui - i @ 
at ax pi ax 
-+u,----- ( i = 1 , 2 , 3  ,..., n),  

where (see figure 2 )  ui, d, and pi denote the velocity, thickness, and density of the ith 
layer respectively, x and t denote horizontal coordinate and time, and the overbar 
denotes a vertical average in the ith layer. ui is assumed to be independent of z in 
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each layer. If the pressure at the top of the nth layer is denoted by p s ,  then for 
hydrostatic flow the pressure a t  a point within the i th layer is given by 

n 

P ( X ? Z )  = p s + g  C Pjdj+gPi C d j - z  , (2.3) 
j=i+l (j:o ) 

where z is the vertical coordinate and do = h(x) denotes topography on the bottom 
level surface z = 0. Equations (2.2) and (2.3) together give 

(2.4) P j d  +& = 0 -+-[&:+g C di+g - (i = 1, ..., n). 1 aui a i 

at ax j = O  j - i + l  Pi Pi 

Following Lee & Su we may accommodate two types of upper boundary: (i) a rigid 
surface a t  the top of the channel, so that 

n 
C dj = D = constant, (2.5) 

j = O  

and (ii) a free suface, where the nth layer is surmounted by a deep layer of density 
pn+l. The hydrostatic pressure p ,  is then given by 

where P, is the value of-p, far upstream, and 
n 

D =  C Di, 
j = O  

where Di is the value of d j  far upstream. 
If we assume that the flow is steady and that ui = U i  far upstream, then (2.1), (2.4) 

integrate to 
d i u i  = w;, 

n 1 

~(u : -u : )+g  C p i i (d , -Di )+A (p,--P,) = 0, 
j =O Pi 

where 
(2.10) 

Lee & Su show that, in general for a given stratified flow specified by upstream 
profiles U i ,  Di ,  i = 1 ,  ..., n, there is a maximum obstacle height which may exist in 
this flow. In the remainder of this paper we present a method for obtaining the flow 
fields caused by obstacles whose height exceeds this value. 

3. Linear disturbances in layered flows 
Expressions for the celerity of linear disturbances to hydrostatic layered flow have 

been derived by Benton (1954) by finding extrema for energy and momentum 
transfer. Here we derive the same wave speeds and the associated wave structure 
directly from the equations of $2. Writing 

I PS = PS+PL 

ui = u i + u ; ( X ,  t ) ,  

di = Di +d;(x,  t ) ,  
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where p i ,  u;, d; denote small perturbations, we obtain to  lowest order 
i 

- 
a ; + g  ; &a;+- - 0 ,  

j - i+1  Pi Pi 

for flow over a level surface. For motion with u; = u;(x-ct), etc. propagating with 
speed c ,  (3.2) may be integrated to give 

i 

(3.3) (ui-c)u;+g 2 d ; + g  ; -k ;+: -o ,  Ps - 
j = l  j = i + l  P i+l  P i  

the constant of integration on the right-hand side being taken as zero for linear 
waves. I n  the frame of reference moving with the wave, the flow is steady. I n  this 
frame the velocity of the ith layer is U , + u ; - c ,  and continuity gives 

Linearizing then gives 
(U,+u;-c) (Di+d;) = constant = ( U i - c )  Di. 13.4) 

(3.5) 
d' 

u; = - ( U , - c )  A ( i  = 1, ..., n ) .  
Di 

Eliminating u; between (3.3), (3.5) then gives 
n 

(3 .6)  
P' - p i ( U i - c ) 2 - 4 + p i  Z d;+ 2 p,d;+" = 0 

SDi j - 1  j - i + l  g 

i d! 
( i  = 1, ..., n ) .  

If the upper boundary is free, we have 

(3.7) 

P n  

Eliminating pi and taking the determinant of the coefficients of the d; yields 
equation for c 

P1F: + Pz - A ,  P P2Fi  . .  0 0 
P2Fi P z F ; + P 3 F : - A d , P . .  0 0 

P 3 F 3  \ 
0 

\ 
\ 
\ 

0 \ 
\ P n - 1 F i - 1  

0 0 . * P n - l F L 1 + P n F i - A n - 1 P  PnFi 
0 0 . .  P n  Fi  Pn Fi - A n  P 

the 

= 0, 

where 

Equation (3.8) is identical with Benton's equation (22) ,  except that he took pi+l = 0.  
It has 2n roots for c.  I f  the upper boundary is rigid we have 

so that 

n 
2 d i  = 0 ,  

i -1  

pi = p n ( U n - c ) 2 - .  d i  
Dn 

(3.10) 

(3.11) 

Eliminating p i  as before yields a tri-diagonal determinantal equation for c which is 
identical with (3.8), but with the nth row and nth column deleted (Benton's equation 
(45)). This equation has 2(n- 1) roots for c. 
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For the purposes of this paper we will assume that all the roots for c are real, so 
that they represent neutrally stable internal gravity waves, unless it is stated 
otherwise. This is equivalent to the assumption that the flow is always stable to shear 
instabilities at long wavelength. We also note that there is no restriction on the 
values c may take. Inspection of two-layer flow, for example, shows that some wave 
speeds may lie between the speed of the fluid layers or perhaps be equal to them, 
without singularities arising. In  these layered flows, critical-layer phenomena, as 
found in continuously stratified flows, do not exist. This implies that layered models 
cannot represent continuously stratified phenomena associated with critical layers of 
infinitesimal thickness. 

For each value of c, the corresponding eigenfunctions (ui, di)  may be obtained from 
(3.5)-(3.7) for the free upper boundary, and (3.5), (3.6) and (3.10)-(3.11) for the rigid 
upper boundary. In  both cases the matrix of coefficients for the d; may be written in 
triangular form, so that computation is simple. We may note that although the 
eigenvalues may be thought of as occurring in pairs (two for each mode), the 
structure of the members of the corresponding pair of eigenfunctions will differ from 
each other unless all the Ui are equal. 

We now show the relationship between these waves and the conditions a t  a 
topographic extremum in hydrostatic flow. Differentiating equations (2.8), (2.9) for 
steady flow we obtain 

du, 
ax 
- 

Eliminating dui/dx then gives 

, ..., n). U; dd. dd. l d p  dh 

gd, i=l ax j=i+l 9 ax ax dx 
-pi-+pi C --"+ C p . - - - ' + - S = - p . -  ( i= 1 

For a free upper boundary we also have 

dx 

so that 

Hence (3.13) may be written 

P3 P3 

' dd, 
dx 
- 

dd, 
dx 

dh 
dx 

- -  - - 

P1 

Pn 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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where 
U; f ?  = - 

‘ qd,’ (3.17) 

If we identify 8 with F: for all i, the left-hand side of (3.16) for ddi/dx is identical 
with that for (3.6), (3.7) for d;. It follows that when 

= 0, 
dh 
dx 
- (3.18) 

(3.19) we must have either = 0, all i, 

or the determinant of coefficients in (3.16) must vanish. If we write U i ,  D, for ui, 
di, the latter implies that we must have a solution to (3.8) with 

dd. 
dx 

c = 0. (3.20) 

In  other words, the speed of one of the internal wave modes must be zero. This is the 
usual definition of the term ‘critical flow’, and we will employ this definition here. 
There are 2n different possible critical flow states. 

If we differentiate (3.16) we may show that a t  a topographic inflexion point where 
dhldx, d2h/dx are both zero, if ddi/dx vanishes there for all i, d2di/dx2 must also 
vanish, so that all the interfaces also have inflexion points there. On the other hand, 
if dhldx and ddi/dx (all i) vanish but d2h/dX2 does not, d2di/dx2 (all i) will also be 
non-zero, so that a topographic extremum implies symmetric streamlines over the 
topography, for non-critical flow. 

For a rigid upper surface we will have 

(3.21) 

in place of (3.14), (3.15). From the above argument, mutatis mutandis, we obtain the 
same results, namely that when dhldx = 0 we must have either 

or 

- ddi - - 0 (i = 1, ..., n), 
dx 

c = 0, J 
(3.22) 

for some internal wave mode. 
The condition of critical flow at an obstacle crest imposes a restriction on the flow, 

which may be expressed as a single algebraic equation relating the variables of all the 
layers. For a single layer this is a very strong restriction, but this strength decreases 
as the number of layers (or ‘degrees of freedom’) increases. 

In  hydraulics it is common usage to term a flow ‘ supercritical ’ or ‘ subcritical ’. For 
uni-directional stratified flows we may say that the flow is sub(super)critical with 
respect to a particular (ith) wave mode if that mode may (may not) propagate 
against the stream, i.e. c, < 0 (ci > 0). The term may be applied to any particular 
point in the flow, or to the flow as a whole. Since increasing the obstacle height 
generally increases the values of c, for all i ,  if the flow is subcritical a t  the obstacle 
crest i t  is subcritical everywhere, for that mode. Of course, a flow may be subcritical 
with respect to some modes and supercritical with respect to others. 

A special type of linear disturbance which is very important in the present 
discussion is the ‘columnar disturbance mode ’. I n  the hydrostatic long-wave model 
employed here, these modes consist of a small change in the velocity and density 
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profiles which propagates a t  the linear wave speed without changing shape. The 
changes in velocity and density have the structure of the appropriate wave mode. 
Propagation of the columnar disturbance mode past a certain point therefore results 
in a permanent change to  the mean flow state. If the long-wave approximation is not 
made, the propagation change has the form of an evolving dispersive wave (McEwan 
& Baines 1974), but the overall effect is the same. 

4. Hydraulic jumps 
For our general model of stratified flow over topography, treated as an initial- 

value problem, we need to consider the possible existence of hydraulic jumps and 
equations which relate the conditions across them. Hydraulic jumps are nonlinear 
structures which propagate without changing, and although they have only been 
satisfactorily observed and described for one- and two-layer flows, it is natural to 
assume that they exist in multi-layer flows also. I n  our hydrostatic flow model they 
may be modelled as discontinuities between one uniform stream and another (see 
figure 3a) ,  and they usually involve a dissipation of energy. Consequently, the energy 
conservation equation (2.9) is not applicable in general. Numerical procedures for 
computing hydraulic jump properties in hydrostatic layered flows have been given 
by Su (1976), and we follow his formalism here. 

Hydraulic jumps may be turbulent or laminar and involve non-hydrostatic 
features. For these reasons it is necessary to  make three assumptions (or restrictions) 
in order to  accommodate them in our hydrostatic model of layered flow. These 
assumptions are numbered (i)-(iii) below. 

We assume: (i) each layer maintains its identity, density, and mass flux through 
the jump. This implies that mixing in the jumps is negligible ; this will be so if the 
layers are immiscible or if the jumps are sufficiently weak. With this assumption 
pi is constant through the jump, and if Ui,  Di denote velocity and layer thickness 
upstream and ui, di the same downstream respectively for the i th layer, in a frame 
of reference in which the jump is stationary, we have 

U i  Di = u id i .  (4.1) 

(ii) The flow in the jump is hydrostatic, or at least sufficiently so for our purposes. 
The steady-state momentum equation obtained from (2.1), (2.4) for the ith layer is 
then 

Integrating this equation across the jump yields 

downstream n 

d i u f - D i U ; + & ( d ; - D ; ) + [  upstream (g j-1 C p i d i d d i ) + t d p s )  = 0, 
f + i  

which may be written 

where 6 denotes the mean value of d ,  in the jump. 
(iii) The mean value of the ith-layer thickness in the jump is given by 

6 = t (Di+di ) .  (4.5) 
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FIGURE 3. (a) Representation of a hydraulic jump for the lowest mode. ( b )  Representation of a 
rarefaction for the lowest mode. The arrows indicate that the leading part of the disturbance 
travels faster than the trailing part. 

Combining (4.1), (4.4), and (4.5) and eliminating ui, we obtain Su’s jump equations 

where 

The above three assumptions are quite plausible if the jumps are weak, and are 
equivalent to those proposed by Yih & Guha (1955) and employed by Houghton & 
Issacson (1970), Su (1976), and the author (Baines 1984). Recently, Chu & Baddour 
(1977) and Wood & Simpson (1984) have put forward different assumptions for two- 
layered flows which may well be superior. However, it  is more difficult to apply their 
scheme to jumps in multi-layered flows because it requires a knowledge of which 
layers are contracting. Also, differences in results for weak jumps from the two 
schemes are small, and observations have not been able to distinguish between them. 
Further study is required, and pending the outcome, use of the first scheme is 
proposed. 

Simple algorithms for computing jumps based on (4.6) have been given by Su 
(1976, $7 )  for both rigid and free upper surfaces. He also presented some numerical 
examples. These algorithms are summarized in Appendix A. Where jumps exist, as 
their amplitudes approach zero their properties (speed and structure) approach those 
of linear waves (or more exactly, columnar disturbance modes, as described in the 
previous section). In  the applications described below, this property enables the non- 
uniqueness of the jump equations (as described by Yih & Guha and Su) to be 
resolved. However, there may or may not be a possible jump associated with a 
particular linear wave mode; the situation for two-layer flows is illuminating, and is 
discussed in detail in Baines (1984). 

5. The general method 
We now describe a flexible procedure for the description and computation of the 

flow that results from the introduction of an obstacle into a known stable stratified 
shear flow, bearing in mind the approximation and assumptions of $ 1 .  The procedure 
is a generalization of results from two-layer studies and has been applied to a number 
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of other situations. It is embodied in a set of computer programs written in 
FORTRAN. These are available from the author, but they may be constructed by 
following the steps described below. 

The upper surface may be rigid or free; we shall assume that it is rigid for 
definiteness. The free surface case then follows, mutatis mutandis. We may define a 
mean velocity lJ by 

l n  D lJ=$lo U(z)dz=- C U i D i ,  
D i-1 

which is taken to be positive, and an overall initial Froude number Fo by 

u 
u-c,’ Fo = - 

where ci is the velocity of the fastest linear wave mode propagating against the 
stream in the frame of the obstacle (the rest frame) in the undisturbed flow. c1 may 
be positive or negative; linear waves can only propagate upstream when i t  is 
negative, so that 0 < Fo < 1.  In these circumstances the flow is said to be ‘subcritical ’ 
with respect to mode 1.  If instead c1 is positive so that Fo > 1, the flow is said to be 
‘supercritical’ with respect to all modes. In  general these wave speeds will be 
functions of horizontal position because of changes in the basic flow, and over the 
obstacle (and in particular a t  the crest) their values will be different from the 
upstream values. 

In some circumstances the procedure requires an additional assumption (termed 
assumption A), namely that the presence of the topography does not result in flows 
on the upstream side which move upstream relative to the obstacle (i.e. have 
negative velocity) in the steady state, at any level. This is based on a large number 
of laboratory observations by the author, and is equivalent to saying that no fluid 
moves from the downstream side of the obstacle to the upstream side. It is also 
generally observed that, for any given steady-state flow, if the obstacle height is 
increased slightly the resulting change to the flow field is such that the velocity of the 
upstream fluid approaching the obstacle at the lowest moving level is decreased, 
provided that the above assumption is not violated in the process. 

To obtain the flow over an obstacle of given height, one begins with an obstacle of 
small or zero height where the steady-state flow is known. The procedure then 
consists of calculatiiig the successive changes to the flow caused by incremental 
increases in the height of the obstacle, up to  the desired value. We describe the 
procedure in three stages, each corresponding to progressively higher obstacles. 

Stage 1 

We assume initially that at least one mode may propagate upstream, so that 0 < 
Fo < 1,  and we imagine that an obstacle with small height is introduced into this flow. 
If the obstacle height h, is less than a critical height h, the new steady-state flow will 
be the same as the undisturbed one except over the obstacle. This flow state is shown 
schematically in figure 4 (a) .  These steady-state changes to the flow and the value of 
h, may be calculated from (2.8), (2.9), and algorithms for doing this are given in 
Appendix B. From the discussion of 93 we have either 

or 
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FIGURE 4. Schematic diagrams of flow states illustrating the method of flow calculation. An 
obstacle is introduced into a flow with an initially uniform velocity profile (but an unspecified 
density profile) with Fo < 1. Upstream velocity profiles and a typical streamline are shown. (a) 
h, < h,, the critical height for this value of Fo; the upstream and downstream steady state is 
unchanged by the topography. (b )  h, has been increased to slightly above h,; flow a t  the obstacle 
crest adjusts to a new critical state and causes a columnar disturbance mode to be sent upstream, 
altering the upstream flow state. ( c )  a further small increase in h, causes the process to be repeated; 
the second disturbance may travel faster (resulting in a jump) or slower (resulting in a rarefaction) 
than the previous one. ( d )  If h, is sufficiently large the flow may become critical just upstream and 
supercritical over the obstacle, as shown here, or ( e )  a fluid layer may become blocked. This usually 
requires more than one upstream mode, as shown here. As h,increased from zero to its present 
value the flow passed through states a, b ,  c and d for the first mode, and a second mode has now 
become critical a t  the obstacle crest. 

and that for h, = h,, ci = 0 a t  the obstacle crest for some i. Hence for h, < h,, 
dd,/dx = 0 a t  dh/dx = 0 for allj. It is not possible for higher obstacles (i.e. h, > h,) to 
be present with this undisturbed upstream flow in steady-state conditions, and 
hence, if h, is increased above h,, changes must take place. 

Stage 2 

If the obstacle height is increased very slightly (infinitesimally) above h, by an 
amount Ah, the flow will adjust locally so that is again critical a t  the obstacle c z s t  
for the same ith mode. This will cause a small linear disturbance, in the form of a 
columnar disturbance mode, to be sent upstream which will alter slightly the 
oncoming velocity and density profiles in the new steady state. This disturbance will 
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have the structure of the same ith mode, will have amplitude Aa (say), and will travel 
upstream at  the long-wave speed of the the ith mode, c,. This is shown schematically 
in figure 4 (b ) .  

If the obstacle height is then increased further by an infinitesimal amount, this 
process will be repeated: the flow will adjust to  a slightly different state at the 
obstacle crest, which will again satisfy ci = 0 there, and a linear columnar 
disturbance mode will propagate upstream a t  the new linear wave speed, altering the 
oncoming flow which approaches the obstacle. Here, however, we must make an 
important distinction between two different cases. The propagation speed of the new 
upstream disturbance may be written ci + Ac,, where Aci denotes the difference in 
speed from the previous value. This speed will be slightly different because the second 
disturbance will propagate on the slightly modified flow behind the first disturbance. 
Aci may be positive or negative. If Aci is positive or zero, the second disturbance will 
never catch up to the previous one, and the new upstream flow and the flow over the 
obstacle are already determined (figure 4c). If, however, Ac, < 0, the second 
disturbance will travel faster upstream and will catch up with the first one and 
increase its amplitude. In effect, this will form an infinitesimal hydraulic jump. As 
discussed in 94, a hydraulic jump travels a t  a speed which is dependent on its 
amplitude, and jump conditions may be found which determine the structure of the 
flow on its downstream side in terms of the upstream conditions and the jump 
amplitude. Once the jump has formed, this structure will in general be slightly 
different from that which was present behind the second upstream disturbance. This 
difference will then be communicated back to the flow in the vicinity of the obstacle 
and cause further adjustments there. These changes will in turn affect the jump, and 
the flow will finally reach a steady state when the jump amplitude is adjusted so as 
to be consistent with a critical flow state a t  the obstacle crest. 

If the obstacle height is increased still further and successive values of Ac, all have 
the same sign, these processes will be repeated. The result in the first case (Ac, > 0) 
will be a succession of upstream disturbances which become increasingly spread out, 
forming a rarefaction (see figure 3 b ) ,  and the result in the second case (Ac, < 0) will be 
a progressively larger hydraulic jump. These two different types of upstream motion 
and the conditions determining them may be summarized by saying that 

dci - < 0 
da 

implies a hydraulic jump, 

dc, 
da 

and - > 0 implies a rarefaction, 

where ci denotes the upstream propagation speed of the ith mode, which is the mode 
that is critical a t  dh/dx = 0, and a denotes the upstream amplitude of this mode. 
Expressions for dc,/da may be obtained in terms of the mean flow properties and the 
structure of the relevant eigenfunction, and these are derived in Appendix C. It is 
important to  note that ct and a here are cumulative variables, in the sense that the 
following disturbances propagate on and add to previous ones. The structure of the 
corresponding eigenfunction also changes continuously. If the upstream amplitudes 
of these disturbances are small the resulting flows calculated assuming one or the 
other flow type will be smilar, but as the amplitude increases the flow properties will 
diverge. 

Both of these physical processes may be calculated numerically. The procedure of 
Lee & Su (1977)  given in Appendix B may be applied for obstacles up to  the critical 
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height (Stage 1 ) .  For higher obstacles the procedure is as follows. For the initial 
incident upstream flow, we first obtain the eigenvalues (giving the wave speeds) and 
the corresponding eigenfunctions (giving the structure) for the internal wave modes 
which may propagate upstream. (Numerical procedures for obtaining such eigen- 
values and eigenfunctions are well known.) The mode with the smallest negativc 
(i.e. upstream) speed will be the mode which is critical a t  the obstacle crest, because 
ci increases over the obstacle. It is this mode which will be propagated upstream as 
a columnar disturbance mode if the obstacle is slightly higher. We therefore add a 
sufficiently small increment of this mode, in the form of the horizontal velocity 
profile and associated density change, t o  the upstream flow, and then apply the 
procedure of Appendix B to obtain the new critical obstacle height. If this critical 
height is greater than the previous one, the correct sign of the upstream disturbance 
has been chosen. If i t  is less, the sign of the disturbance should be reversed and the 
new critical height found. One then solves for the new eigenvalues. If the eigenvalue 
for the upstream wave speed for the same mode as before is more negative than 
before, one must use the procedure appropriate for jumps (see next paragraph). If it  
is not, then we proceed by simply repeating the previous steps, adding an increment 
of the associated mode to the upstream profile and solving for the corresponding 
critical height. This process may then be repeated again and again and is justifiable 
provided the new upstream wave speed a t  each step is more positive than or equal 
to the previous one. 

If, a t  the second calculation, the upstream wave speed for the relevant ith mode 
is less (i.e. more negative) than the first calculated value, a jump procedure is 
appropriate. This involves assuming the presence of a jump, initially a t  a very small 
amplitude and with a speed approximately equal to ci. Conditions for such jumps and 
their properties may be calculated using the procedure of Xu outlined in Appendix 
A. With an assumed upstream jump of given amplitude, the horizontal velocity and 
density profiles downstream of the jump and upstream of the obstacle will be 
determined. We then utilize the procedure of Appendix B to find the new critical 
height of the obstacle in this new oncoming stream, and, all things being correct, i t  
will be higher than the previous critical height. Calculations of this nature with a 
single jump may be used to determine the flow over obstacles with a range of heights 
greater than h,. It is not correct to hypothesize a succession of small jumps, because 
these will accumulate into a single jump in the steady state, and the two downstream 
states will be different. The calculations for hydraulic jumps involve a requirement 
that energy be dissipated in the jump, and this necessary condition is given in 
Appendix B. For the two-layer system described in Baines (1984), this energy loss 
becomes zero when the jump reaches its maximum amplitude. 

If dc,/da < 0 initially, as the jump amplitude is increased the value of this 
derivative downstream of the jump may decrease to zero and become positive. When 
this occurs it is necessary to change from the ‘jump procedure’ to the ‘rarefaction 
procedure ’ a t  the point where the derivative becomes zero. The upstream disturbance 
will therefore consist of a hydraulic jump followed by a rarefaction. The reverse case, 
in which dc,/da > 0 initially, giving rarefactions, and then changes sign, is 
conceptually possible but seems uncommon. It requires ci to have a maximum value 
as the amplitude of the disturbance increases, and it does not occur in any of the 
systems studied to date. If it should occur, rarefactions would be calculated to the 
point a t  which dci/da became negative ; as ci progressively decreased, i t  would then 
be necessary to calculate the jump by returning to and starting from the point in the 
rarefaction where ci had the same value as the new jump speed, so that the growing 
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FIGURE 5. Downstream fluid velocity w1 as a function of disturbance height d, in a single layer, 
calculated for a jump (top left) and a rarefaction (bottom right) moving into fluid at rest. 

.- 4 

hydraulic jump would progressively erode the rarefaction. Since one begins by 
choosing a jump amplitude and then calculates a speed, an iterative scheme would 
probably be necessary. 

In  some situations de/da may decrease and then increase (or vice versa) over a 
small range. Strictly, this requires employing a jump and then a rarefaction, but for 
computational reasons this may be inefficient or convenient. For the purpose of 
determining the steady-state flow is is often more convenient in general to use a 
rarefaction model in place of a jump model, as the former has been found to be easier 
to treat numerically. This is justified provided that the error involved is small. An 
indication of the magnitude of such an error can be obtained by examining the 
prototype system of a single layer. Referring to figure 5, for a jump moving into fluid 
a t  rest with speed CJ the equations are 

(C.J-V1)dl = (5.3) 

so that the fluid velocity vi behind the jump is related to the jump height by 

Note that here the jump and the fluid behind it are both moving in the positive x- 
direction, in contrast to the other situations in this paper. For a rarefaction on the 
other hand, we have 

d 
dt 
- (vl f 2(gd1)9 = 0 on (5.5) 
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so that (5.6) 
on a simple wave expanding into fluid a t  rest of depth do (we here ignore the fact that 
if d ,  > do, this wave will steepen into a jump). Hence the fluid velocity behind the 
‘rarefaction ’ is given by 

(5.7) 

Equations (5 .4)  and (5 .7)  are both plotted in figure 5 ,  which shows that they agree 
quite well even to quite large amplitudes. Hence the character of the disturbance 
only affects the flow state behind it when the disturbance amplitude is very large, so 
that the rarefaction procedure is equivalent to the jump procedure at moderate 
amplitudes. Similar agreement is expected in more complex layered systems. 

Stage 3 
The above procedures may be followed to obtain the flow over progressively higher 

obstacles until one of two things happens. These are (i) the flow immediately 
upstream of the obstacle may become critical (with respect to the ith mode, so that 
ci = 0 just upstream) or (ii) the velocity U ,  of some fluid layer (usually, but not 
always, that of the lowest layer, U , )  may become zero just upstream. We now 
discuss each of these situations in turn. 

(i) Critical flow upstream, ci increases to zero. When c, becomes zero upstream the 
flow over the topography must be supercritical with respect to this mode. The flow 
over yet higher obstacles may now be calculated using the procedure of Appendix B 
with the flow upstream fixed, giving symmetric supercritical flow (in the ith mode) 
a t  the obstacle crest. If the ith mode is in fact the fastest upstream mode (i.e. i = 
l), this will be applicable for obstacle heights up to the maximum h, = D. The flow 
is shown schematically in figure 4 ( d ) .  If the ith mode is not the fastest, then as the 
obstacle height is increased the slowest mode still propagating upstream (the 
(i- 1)th) will become critical a t  the obstacle crest (i.e. c6-l = 0 there) at some value 
for the obstacle height. This constitutes a new critical height, but now it is for the 
(i- 1)th mode. To obtain in the flow for higher obstacles it is now necessary to alter 
the upstream flow profile, and this is done by repeating the procedure described in 
Stage 2 ,  but now involving the (i- 1)th mode rather than the ith. An example where 
this occurs is given in figure 7. 

(ii) Blocking. Assumption A above implies that when the velocity of a fluid layer 
is reduced to zero, changes must take place in the character of the upstream 
disturbances. If the blocked layer is the lowest layer (as is most common), further 
increases in the obstacle height must result in upstream disturbances which (after 
their passing) keep layer 1 a t  rest whilst (probably) reducing the velocity of layer 2 .  
For this to occur, the upstream disturbances must be more complicated than 
previously. In general they will consist of two disturbances -a  faster mode and a 
slower mode, of which either may be a jump or a rarefaction, and which together 
result in the lowest layer remaining a t  rest, but with an altered thickness. The use 
of the procedures described above with such double upstream disturbances was 
found to be difficult and tedious. For this reason, blocked flows were not investigated 
in any detail. However, some practical approximations may be noted. For the 
upstream disturbances, for all cases where A ,  p/pl + 1 it may be easily demonstrated 
that inertial effects in the bottom (nearly) stagnant upstream layer are negligible. 
The layer may then be termed ‘inert ’ on ‘isostatic ’; its thickness adjusts to changing 
pressure above to keep the pressure in the bottom layer constant. This also implies 

v, - 2(gd,)i = constant = - 2(gd0)f, 

V 

+ (9dOP = 2 [($l]. 
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that the upper surface of the bottom layer acts as a lower free surface to  the moving 
layers above. This provides an approximation which may be incorporated into the 
equation of $ 3  for the upstream wave speeds and corresponding eigenfunctions, by 
simply omitting the terms containing Fl as a factor; the upstream disturbances are 
reduced from two modes to a single mode with a free lower surface. When, for higher 
obstacles, the second layer is also brought to  rest, the isostatic approximation for the 
bottom two layers requires that terms containing Fl and F, both be omitted. Once 
the second layer becomes blocked it ‘shields’ the bottom layer from changes 
occurring in the moving layers above, so that only the uppermost stationary layer 
is affected by them. This procedure may be extended to any number of blocked 
layers. However, although the isostatic approximation for a blocked layer is a useful 
simplification, upstream disturbances with a free lower boundary do not necessarily 
conserve the mass flux in the channel. Therefore, for large amplitude disturbances 
with a blocked layer further modifications to  the procedure are required, and these 
are discussed for the special case of the three-layer system in the next section. 

In the discussion so far it has been assumed that Fa < 1. If Fa > 1 the flow will be 
supercritical with respect to all modes for sufficiently small obstacles, and it may be 
calculated using (2.8), (2.9) and Appendix B. If Fo is large enough, the flow may 
remain supercritical over all obstacles as the height is increased to the maximum 
possible (the total depth D in finite depth systems). Alternatively, as h, is increased 
the flow may become critical a t  the obstacle crest for the fastest mode, giving a 
critical value h, = h,. For higher obstacles, disturbances must be sent upstream to 
alter the velocity and density profiles. Since Fo > 1, however, these cannot take the 
form of linear waves travelling a t  speed cl.  The results from two-layer studies 
indicate that the upstream disturbance must take the form of a jump of finite 
amplitude, large enough to propagate against the oncoming stream. This jump may 
be calculated by the same procedures as given above for Fa < 1,  with critical flow at 
h = h,. Downstream of the jump the flow will be subcritical with respect to the 
obstacle for the fastest mode, so that the procedures described above for Fa < 1 will 
apply for larger obstacles here also. 

The fact that a jump appears a t  finite amplitude suggests that, for smaller 
obstacles, it  may also exist a t  smaller amplitudes. This is in fact the case for two- 
layer systems, implying a hysteresis phenomenon where two steady flow states 
(supercritical flow, or flow with an upstream jump) may exist for the same external 
flow parameters, and the state which is actually obtained depends on the history of 
the flow. This is discussed in detail in Baines (1984), and we should look for these 
phenomena in any system where jumps are possible. 

For systems with Fa < 1 (and possibly even Fa > l),  this type of two-state behaviour 
may well exist for higher order (i.e. slower) modes than the fastest, when jumps 
associated with these modes are possible. Given the wide range of possible stable 
stratified shear flows, all types of combinations of phenomena mentioned above are 
conceivable, and a thorough analysis of the nonlinear dispersion properties of a 
system will be necessary to describe its flow properties. 

6. Two examples 
To illustrate the above general procedure and the nature of the results obtained, 

we here briefly describe tjhe results from two examples. For both of these, the overall 
density variation is assumed to  be small (i.e. Ap/p < 1). The examples are as 
follows. 
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FIGURE 6. Steady-state flow properties of a two-layer system with a rigid upper boundary in terms 
of the initial Froude number F, and H = h,/D, where D is the  total depth. Here Aplp 6 1, r = 
d,,/D = 0.1 where d,, is the undisturbed depth of the lower layer, and R = d,,/d,, is the relative 
increase in depth of the lower layer due to upstream disturbances caused by the introduction of the 
obstacle. Points denoted A,  B, C, D and E correspond, loosely, to flows a,  b ,  c, d and e of  figure 4. 
‘Partially blocked flow’ refers to flow with a reduced mass flux in the lower layer. The dashed line 
denotes the boundary of the region where the flow is critical upstream. A hysteresis region exists 
when Fo > 1 ,  where the flow may be supercritical or partially blocked, as discussed in Baines (1984) 
where more details are given for two-layer systems. 

(i) A two-layer system with a rigid upper boundary, uniform velocity profile, and 
the lower thickness equal to 10% of the total depth. Figure 6 shows the regions of 
(Fo, H)-space where the various different types of upstream flow are obtained using 
the procedure of $5. This diagram is similar to figure 16 of Baines (1984) but is more 
complete, covering obstacles up to the maximum height. If we take Fo = 0.4 (for 
example) and increase the obstacle height from zero, the flow is subcritical until h, 
reaches the critical height a t  the solid curve. Up to this point the flow resembles state 
(a )  of figure 4. If the height is increased above the critical value to point B a small 
amplitude jump is sent upstream, forced by the requirement for a critical condition 
a t  the obstacle crest. A larger jump is obtained a t  point C, and so on to  point E ,  where 
the lower layer is totally blocked. Further increases in the obstacle height do not 
change the upstream flow. The total (Fo, H)-diagram may be constructed in this way; 
upstream jumps are obtained up to the maximum height (R = 3.965) or to the dashed 
line (where the upstream flow is critical). Rarefactions are produced to  the right of the 
curve R = 3.965, up to the dashed line. For Fo > 1 there is a hysteresis region where 
the flow may be supercritical or partially blocked. The procedure described above 
will only give the ‘supercritical’ solution in this region, and to obtain the other 
solution i t  is necessary to initiate the flow in a different manner, as described in 
Baines (1984). 

(ii) A three-layer system, where the velocity profile is initially uniform and the 
layer depths and density increments are equal. The flow properties in terms of Fo, 
H = H,/D calculated by this procedure are shown in figure 7. 
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FIGURE 7 .  Steady-state flow properties in terms of Fo and H = h,/D of a three-layer system with 
a rigid upper boundary; the layer depths, their fluid velocities and density increments are all 
initially equal and A p / p  < 1. This system has two modes, compared with one for the system in 
figure 6. In the shaded regions the upstream disturbances increase with increasing obstacle height. 
The points A ,  B,  C, D and E correspond to the states a, b, c, d and e of figure 4. 

The shaded parts of the diagram illustrate the regions where the upstream 
disturbance increases with obstacle height, and the non-shaded parts of the regions 
where it remains constant as H increases. This system has two vertical modes rather 
than one (in example (i)) and this is reflected in the nature of the diagram. Points A ,  
B,  C, D and E represent flow states a, b ,  c ,  d and e of figure 4. The upstream 
disturbances are rarefactions if layer 1 is not blocked, and jumps (mostly) after layer 
is blocked. The flow is always supercritical if F, > 1.  

When layer 1 was blocked the isostatic-lowest-layer approximation was used 
initially, but with increasing obstacle height this resulted in an increased loss of mass 
flux through the channel. To accommodate this, when layer 1 was blocked the 
following approximate procedure was adopted after rejecting several others. (i) The 
upstream disturbance was first calculated with the assumption that layer 1 was rigid; 
(ii) the change in thickness of layer 1 was then obtained from the hydrostatic 
relationship, with Bernoulli’s equation being assumed for the uppermost layer to 
obtain the change in pressures at the top-most surface of the channel; (iii) from the 
new value of d,, d, and d, were corrected in the same proportion, and then u2, u, 
obtained by conservation of mass in each layer. This procedure has not been formally 
justified but the results obtained were plausible, satisfied all the constraints, and 
were generally consistent with observations of the lowest layer depth described in 
Baines & Guest (1988). 



Determining upstream effects in strati$ed flow 19 

7. Summary and discussion 
I have described a flexible procedure for calculating the flow which results from the 

introduction of a single long obstacle into an arbitrary stable stratified shear flow 
which does not permit internal wave energy to escape through an upper boundary. 
The procedure is based on a generalization of results obtained from the study of two- 
layer flow and may be summarized as follows. For any given flow, the steady-state 
changes caused by introducing an obstacle will be restricted to the vicinity of the 
obstacle if the maximum obstacle height h, is less than a critial value h,. When 
h, = h,, the flow is critical a t  the obstacle crest. If h, is increased above h,, 
disturbances are sent upstream which alter the oncoming velocity and density 
profiles so as to keep the flow critical a t  the obstacle crest. These upstream 
disturbances may be of two types - a hydraulic jump, which occurs when larger 
disturbances travel upstream faster than smaller ones, and a rarefaction, when the 
reverse is the case. If the obstacle height is increased further these disturbances will 
also increase (and may change from one type to the other) until either the fluid a t  
some level becomes blocked (i.e. it cannot pass over the obstacle) or the flow 
immediately upstream becomes critical for the relevant internal wave mode. If the 
obstacle height is increased still further, these processes may be repeated for other 
modes. An assumption based on empirical observations has been used in determining 
the nature of the forced upstream disturbances, namely that no fluid moves 
upstream relative to the obstacle in the steady state. The solution determined by this 
procedure, based on incremental increases in the obstacle height, will be the solution 
if it is unique. However it is known that under some circumstances (notably when 
jumps may be present), more than one steady flow state may be possible, and the 
history of the flow will be important in determining which state occurs. 

Numerical procedures have been indicated for these various possibilities. The 
results have been verified for two-layer systems and also (to a lesser extent) for a 
three-layer and a continuously stratified system (Baines & Guest 1987). One 
important inference from the two-layer studies is that, a t  least in this case, it is a 
justifiable approximation to model jumps as discontinuities, as described in Q 3, 
although the jumps themselves may have complicated internal structure in the form 
of turbulent or undular bores. The familiar balance between nonlinearity and linear 
wave dispersion which controls solitary waves may also control bore structure, but 
provided they propagate as steady-state phenomena, it is justifiable to represent 
then as travelling discontinuities as far as the remainder of the flow is concerned. 

The use of the word ‘rarefaction’ deserves comment. The work is used to imply 
that the disturbance is being rarefied or thinned out by elongation, rather than the 
fluid itself. Other terms such as ‘expansion wave’ have been suggested, but in my 
opinion these are no less ambiguous or cumbersome. 

The procedure may require modifications for some flows where as yet unanticipated 
phenomena may occur, but it appears to provide a flexible and workable framework 
for most cases. It should also be applicable, with a little modification, to situations 
where the flow contracts horizontally as well as vertically, provided the two 
contractions occur a t  the same place. Conditions for critical flow under these 
circumstances may be found without difficulty (Armi 1986). 

The author is grateful to Roger Grimshaw for discussions, to Ronald Smith for 
indicating the procedure of Appendix C, to Fiona Guest for computing the results of 
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figure 6, to the hospitality of JISAO and the Department of Oceanography, 
University of Washington, Seattle, where this work was completed, and to Carol 
Drew for typing the manuscript. 

Appendix A. Algorithms for computing jumps 

Using the equations and notation of $4, for hydrostatic flow we have 

A. 1 .  Free upper surface 

n 

ps-p, = -gpn+1 C ( d j - L ) j ) .  
j=1 

Substituting into (4.6) then gives 

D i t j  (i = 1 , 2 ,  ..., n - l ) ,  (A 2 )  
j = i + l  Pi+l- Pn+l 

where 

Equa.tions (A 1) and (4.6) with i = n also give 

One then proceeds by taking a value off;, in the range - 1 < tn < CQ and then using 
(A 2 )  to  obtain successive values of tn-l, tnp2, ..., C1. Hence D, may be calculated as 
a function of En only, and the zeroes of D, will give permissible jumps. For weak 
jumps, g n  will be close to zero. 

A.2. Rigid upper surface 

Here the procedure is essentially the same, with (A 2), (A 4) replaced by 

and 

respectively. 

is 
The jumps also have an energy-loss criterion which must be satisfied. This criterion 

n 

$ C P i D i u q f ( f ; i )  < O ,  (A 7)  
i=l 

where - t3 
f ( f ; )  = ( l + f ; ) " 2 + [ ) '  
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Appendix B. Algorithms for computing the effects of changes in 
topographic height on the flow 

Substituting (A 1) in (2.9) gives 
B. 1. Free upper surfuce 

Pn+l 1 -- 

(k- I) D j  ( i  = n- l,n-2, ..., 1 , )  (B 1) 

(B 2 )  
U .  where v. = 

For i = n we obtain 

U j '  

P n  

Choosing a value of v, enables all successive values of vi, i = n- 1 ,  ..., 1 to be 
calculated, and hence h may be evaluated as a function of v,. Starting with b, = 1, 
where h = 0, v, is increased or decreased incrementally to give positive values of h. 
The chain of calculations is continued until h passes through a maximum and returns 
to zero. This maximum height is the critical height, where some internal wave mode 
has zero upstream propagation velocity a t  the obstacle crest. 

B.2. Rigid upper surface 

Here we have essentially the same procedure, but with (B l ) ,  (B 3) replaced by 

(i = n-1 ,n -2 ,  ..., l), 
i-1 

respectively. 

Appendix C. Expression for dc/da - the rate of change of linear wave speed 
with amplitude of columnar disturbances 

We consider linear disturbances on a layered flow Ui,  Di, i = 1, n, with a free upper 
surface. Such disturbances are governed by equations (3.5)-(3.7). We may represent 
a disturbance in the form 

d ;  = adAi, U ;  = auk,, c = ci, (C 1) 

(omitting x and t dependence) which will constitute some particular mode, with a a 
measure of the amplitude and taken as small. If this disturbance propagates as a 
columnar disturbance mode and adds to the mean flow, the new mean flow will be 
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Ui +auhi, Di + adhi. A new small amplitude disturbance propagating on this flow may 
be written 

b(d&+ad;,) ,  b(u;,+auii), c = c i+ac; ,  (C 2) 

where b is another small amplitude parameter. We then have c; = dc/da. Substituting 
(C 2) into (3.5)-(3.7) we obtain, to lowest order in a, 

If we multiply this equation by d& and sum over i ,  the resulting left-hand side 
vanishes, by virtue of (3.6) with d;  = dht. The right-hand side then gives the 
expression for c; 

If the upper layer is rigid rather than free, the same analysis yields the same 
expression but with ciLn = 0. 
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